

VIC 26-27 May 2008

WP 2 DESIGN BY ANALYSIS

• T2.1 STRUCTURAL ANALYSIS

Objectives: Buckling theoretical model of H.C for several boundary conditions

WP 6 TESTING AND MONITORING PROCEDURES

- T6.1.1 FIELD TESTING
- T6.1.2 LAB TESTING

Objectives: Experimental lab buckling of H.C for several boundary conditions (Bench Tests) Field buckling tests of H.C using real machines: Farm loader and back-hoe

Indoor buckling tests of H.C using a real mini back-hoe machine

WORK PERFORMED DURING THE LAST PERIOD (37-48 months)

- 1. Bench tubular rods experimental buckling tests.
- 2. Bench experimental buckling tests with hydraulic cylinder with tubular rods
- 3. Bench experimental tests with hydraulic cylinder rods in order to evaluate the material resistance properties (Bending and Tensile Tests)
- 4. Visual Basic software for the mathematical model evaluation
- 5. Experimental tests with tubular rods filled with ceramic material (collaboration with BCE)
- 6. Collaboration with IFTR and ROQUET for a new design method for H.C based on probabilistic design
- 7. Field Tests: (Collaboration with HIDRAR)
 - Indoor test with backhoe (HIDRAR/UPC) (cylinders and rods)
 - Field test with backhoe (HIDRAR-BMH)

	year	Factors Affecting Actuator Load Capacity					
STATE OF THE ART		E X P	Initial Imperfection	Friction Torques	Load Eccentricity	Actuator Weight	Fluid
Hoblit, Fred. Critical buckling for hydraulic actuating cylinders.	1950		is considered				is considered
K.L Seshasai Stress Analysis of Hydraulic Cylinders.	1975		as initial data				is considered (Hoblit)
Bennett, M.C A Calculation of Piston rod Strength.	1978		as initial data	only for piston rod articulation		reaction in piston rod articulatio n	
Ravishankar, N. Finite Element Analysis of Hydraulic Cylinders.	1980		elastic rigidity in connection point			as a distributed Ioad	
Chai Hong Yoo Column loadings on telescopic power cylinders.	1986		through FEM		through FEM	through FEM	
S. Baragetti Bending behaviour of double- acting hydraulic actuators.	2001		initial definition as sinusoidal	Equivalents for both sides			
Norma ISO/TS 13725 (ISO/TC131 subcom. SC3)	2001				is considered	is considere d	is considered (Hoblit)
Yishou T., Wenwel, W. Stability analysis for hydraulic hoist cylinder of	2004		is considered			distributed load in tube and	is considered

Important parameters have been considered to achieve a better knowledge about H.C BUCKLING PHENOMENA:

1- Misalignment : rod / cylinder tube

- Clearance between gland and rod
- Cylinder body deformation due to oil pressure (CIMNE)
- Guide ring wear effect (TRELLEBORG SS)

2- Interaction in pin/bushing joint (Friction)

• Friction torques in hydraulic cylinder end joints

3-Mechanism layout effect on load capacity

THEORETICAL MODEL MATRIX

$$\begin{pmatrix} \operatorname{sen}(k_{1}L_{1}) & 0 & 0 & -1 & 0 & \frac{L_{2}}{PL} - \frac{\cos(k_{1}L_{1})}{P} & \frac{L_{1}}{PL} \\ 0 & \cos(k_{2}L) & \operatorname{sen}(k_{2}L) & 0 & 0 & 0 & \frac{1}{P} \\ 0 & \cos(k_{2}L_{1}) & \operatorname{sen}(k_{2}L_{1}) & -1 & 0 & \frac{L_{2}}{PL} & \frac{L_{1}}{PL} \\ -k_{1}\cos(k_{1}L_{1}) & -k_{2}\sin(k_{2}L_{1}) & k_{2}\cos(k_{2}L_{1}) & 0 & -1 & -\frac{k_{1}\sin(k_{1}L_{1})}{P} & 0 \\ 0 & 0 & 0 & K_{C}P & 0 & -K_{C}\frac{L_{2}}{L} & -K_{C}\frac{L_{1}}{L} \\ 0 & -k_{2}\sin(k_{2}L) & k_{2}\cos(k_{2}L) & 0 & 0 & -\frac{1}{PL} & \frac{1}{PL} \\ \end{pmatrix} \begin{pmatrix} Q_{1}\cos(k_{1}L_{1}) + \frac{Q_{1}}{PL} - \frac{q_{2}L_{2}}{P} - \frac{q_{1}L_{2}^{2}}{P} - \frac{q_{1}L_{2}^{2}}{2P} - \frac{q_{1}L_{2}^{2}}{R^{2}P} \\ -\frac{Q_{2}}{P} - \frac{q_{2}L^{2}}{2P} - \frac{L_{1}^{2}}{2P} (q_{1} - q_{2}) - \frac{q_{2}}{R^{2}P} \\ \frac{Q_{1}L_{1}}{PL} - \frac{q_{2}L_{1}L_{2}}{P} - \frac{L_{1}^{2}}{P} (q_{1} - q_{2}) - \frac{q_{2}}{R^{2}P} \\ \frac{Q_{1}L_{1}}{PL} - \frac{q_{2}L_{1}L_{2}}{P} - \frac{L_{1}^{2}}{P} (q_{1} - q_{2}) - \frac{q_{2}}{R^{2}P} \\ \frac{q_{1}}{R} \operatorname{sen}(k_{1}L_{1}) \\ \frac{Q_{1}}{R} + K_{C} \left(\frac{q_{1}L_{1}}{PL} + q_{2}L_{1}L_{2} - \frac{Q_{1}}{L}\right) \\ -\frac{Q_{1}}{PL} - \frac{q_{1}L_{1}}{P} (q_{1}L_{1} + q_{2}L_{2} - \frac{Q_{1}}{L}) \\ \frac{Q_{1}}{R} + K_{1} + Q_{2}L_{2} - \frac{Q_{1}}{L} \\ \frac{Q_{1}}{R} + Q_{2} + Q_{2} - \frac{Q_{1}}{L} \\ \frac{Q_{1}}{R} + Q_{2} + Q_{2} + \frac{Q_{2}}{R} \\ \frac{Q_{1}}{R} + \frac{Q_{2}}{R}$$

Actuator as a component of the mechanism

TORQUE in rod pin is **positive**

M23 is **RESISTIVE TORQUE**

ANG. VELOCITY of rod is **positive** and TORQUE in rod pin is **negative** ROD TORQUE POWER IS **NEGATIVE**

Previous Experimental work

ROD DIAMETER : 30mm GLAND DIAMETER : 30 30,2 30,4 30,6

Experiments with hydraulic cylinders

Theoretical Model vs Experimental Results (frictionless)

Pin diameter = 22mm and bush diameter = 25,6 mm

Gland mm	30	30,2	30,4	30,6	31	32
Misalig. Angle (°)	0,136	0,198	0,275	0,341	0,473	0,802

FRICTION and FRICTIONLESS JOINTS COMPARISON

Gland Diameter (mm)	r Θ ₁ (grades)
30	0,136
30,2	0,198
30,4	0,275
30,6	0,341
31	0,473
32	0,802

presión 📈

Presión (bar)

laser.

laser 2

Laser 1

en mm

-3,6438

Laser 1

en Voltios

1,83838

Laser 2

en mm

Laser 2

en Voltios

6,47719

2

0,898132

Presión en Voltios

Laser 3

en mm

Laser 3

en Voltios

ES 🛛 🌉 🏤 13:00

-4,31824 -4,24072

2,19055 2,12341

Strain gauges for bending moment measurement along the rod

Bending torques measured through strain gauges

REAL BI-ARTICULATED CYLINDERS

DUMPER TRUCK

WORK PERFORMED DURING THE LAST PERIOD (37-48 months)

Bench experimental tests with hydraulic cylinder rods in order to evaluate the material resistance properties (Bending and Tensile Tests)

UNIVERSAL TESTING MACHINE (3 Points Bending test)

Flexural test with three-point loading

BENDING STRESS DETERMINATION

TUBE AND BAR ROD BENDING TESTS)

Rod F-114 30mm diameter L= 500mm

Flexural test with three-point loading

.EXPERIMENTAL BENDING RESULTS WITH <u>BAR RODS</u> (30mm diameter and L=500mm)

Test Nº	Machine (Limit force) (kN)	Max. load (Elastic Zone) (kN)	Equivalent Stress (MPa)
1	25	15	707
2	200	14	660

Average: 684MPa

EXPERIMENTAL RESULTS WITH TUBULAR RODS

(30/24 and 30/20 mm external/internal diameters)

Tube N°	Wall Thickness (mm)	Load (kN)	Equiv. Stress (MPa)
1	3	8	639
2	3	8,15	651
3	5	12,5	735
4	5	12,4	728

Average: 688MPa

UNIVERSAL TESTING MACHINE

(3 Points Bending test)

TENSILE TESTS

EXPERIMENTAL BUCKLING OF H.C (USING TUBULAR RODS)

ADVANTAGES:

1- H.C WEIGHT REDUCTION

2- ECONOMICAL IMPACT

3- ON-LINE MONITORING (SENSORS INSIDE ROD)

4- AESTHETIC ASPECT

TUBULAR RODS BUCKLING

(30mm external diameters)

Tube thickness	Pin Diameter	Test N°	Buckling Load
3 mm	22 mm	4	32,75 kN
3 mm	22 mm	5	31 kN
3 mm	25,6 mm	3	68,38 kN
3 mm	25,6 mm	6	72,1 kN
5 mm	22 mm	11	42,68 kN
5 mm	22 mm	12	43,49 kN
5 mm	25,6 mm	10	97,16 kN

EXPERIMENTAL LOAD vs EULER LOAD

- Tubular rods 30/24mm
- Frictionless boundary conditions

(SAME PIPE but DIFFERENT ROD LENGTH)

	H.C Length (mm)	Experimental Load (kN)	EULER Load (kN)	Relative "Error" (%)
Standard \rightarrow	1220	49	31,1	36,53
	1320	36,8	26,6	27,713
	1420	29	23	20,68
	1645	18,4	17,1	7,06

EXPERIMENTAL H.C BUCKLING SUMMARY

Frictionless boundary conditions (Joint pin 22mm)

Tubular rods 30/24mm

FRICTIONLESS

FRICTION BOUNDARY CONDITIONS (Pin joint 25,6mm) Tubular Rod 30/24mm)

SUMMARY RESULTS

HYDRAULIC CYLINDERS

SIMPLE RODS

BUCKLING OF TUBE RODS FILLED WITH CERAMIC MATERIAL

BCE-UPC

BUCKLING TEST BENCH

Bi-articulated rod(diam. 6mm) (L= 250 mm)

Bi-Clamped rod (6mm diameter)

Rods with ceramic core –BCE/UPC

Full section

Annular section

Annular+Ceramic

Indoor tests with backhoe (HIDRAR/UPC) (cylinders and rods)

BACKHOE FRAME

MASTER CYLINDER Mechanical advantage=8

Rod test on backhoe machine

Rod	Dext	D int	
FULL SECTION	15	0	1.240
	20	0	1.240
	25	0	1.240
	30	0	1.240
ANNULAR SECTION	15	9	1.240
	20	14	1.240
	25	19	1.240
	30	24	1.240

Rod buckling (stick movement) on bachoe

Torque curve (just before buckling)

Starting torque curve

FARM LOADER

ISO 13.725 Excel sheet application

Tipos de montaje

FINAL CONCLUSIONS

- 1- ISO Standard 13725 does not include the misalignments and adherence pin/bushing friction effects.
- 2- adherence or friction pin/bushing represent a factor of 3 compared with ideal bi-articulated joints.
- 3- hydraulic cylinder own weight (aprox 100 N) has a negligible influence on load capacity (only 2% reduction of load capacity)
- 4- misalignment due to guide ring wear (5 % due to 1000 cycles) has a higher influence on load capacity (reduction of load capacity about 10 %)
- 5- In the hydraulic cylinder tested, an eccentric load of 1 mm, reduced the load capacity about 12 %
- 6- In real machines, mechanism layout can modify the hydraulic cylinder load capacity during the kinematics cycle due to the friction torques in pin/bushing joints. The friction torque can be an ACTIVE TORQUE or a PASSIVE TORQUE, depending on mechanism kinematics. This innovative result has been demonstrated by the experimental buckling results experiments applied on real machines (Farm loader and Backhoe).
- 7- Buckling experimental results showed that tubular rods filled with ceramic material did not gave the expected results

ACHIEVEMENTS BEYOND THE STATE OF THE ART

•A theoretical model for different boundary conditions was developed and experimentally validated, describing the cylinder load capacity, including all those important factors affecting its load capacity, such as:

•Misalignment between cylinder rod and cylinder body due to assembly tolerances

•Misalignment due to guide rings wear

•Misalignment due to oil pressure

•Frictions at end bearing supports and

•Cylinder own weight.

•ISO 13725Excel sheet application for different boundary conditions has been developed.

•Several typographic mistakes have been detected in ISO 13725 and should be transmitted to ISO Committee through UNACOMA/AIFTOP.

•The mathematical model is implemented by Excel worksheet, using Visual Basic software, for load capacity and piston-rod diameter evaluations.

•Experimental data base creation with more than 100 hydraulic cylinders which have been destructed using the buckling test bench for cylinder's load capacity calculation.

•Experimental results on real machines (Farm loader and Backhoe) demonstrated that layout can modify the hydraulic cylinder load capacity during the kinematics cycle, due to the friction torque in pin/bushing joints.